Ensemble Habitat Suitability Modeling for Invasive Plants:

Assessing Model Performance and Accuracy Across 21 Species in WI

Mark Renz & **Niels Jorgensen**University of Wisconsin-Madison

Wisconsin has a large number of regulated invasive species

- Over 145 invasive plants are regulated
 - 68 are prohibited = must control
 - 63 are restricted
 - recommend control
 - can't move propagules to un-infested areas
 - 14 are split listed
 - prohibited where uncommon/absent
 - restricted where common

Large # of regulated plants challenge land managers ability to identify and monitor for

- Resources have been made to help with ID
- Land managers want tools to help prioritize monitoring efforts

Japanese knotweed

Polygonum cuspidatum)

ob: Rantsaridnofrom seedhave a

Habitat suitability models can help improve monitoring efforts

- Using a model to inform monitoring for 1 invasive species <u>can improve</u> <u>success rate</u>
 - Crall et al. 2013

Funded to create 21 habitat suitability models for WI regulated plants

- Ensemble modeling approach using 5 models
 - boosted regression tree (BRT), generalized linear model (GLM), multivariate adaptive regression splines (MARS), maximum entropy (MaxEnt), random forests (RF)

Observations

- Existing databases (Great Lakes Early Detection Network, EDDMapS, WI DNR)
- Citizen scientists (data verified)
- Used common environmental, topographic, and climactic conditions available for geo-referenced locations.

Utilized Iterative Approach

Assess Models

To determine if further improvement is needed

(Fall 2017)

How well did the iterative approach work?

Common Name	Scientific Name	inc	Total
Garlic mustard	Allaria petiolata	44%	3,520
Japanese barberry	Berberis thunbergii	13%	474
Oriental bittersweet	Celastrus orbiculatus	4%	223
Spotted knapweed	Centaurea stoebe	37%	6,899
European marsh thistle	Cirsium palustre	59%	1,369
Teasels	Dipsacus spp.	3%	1,541
Autumn olive	Elaeagnus umbellata	59%	156
Leafy spurge	Euphorbia esula	106%	698
Knotweeds	Fallopia spp.	17%	1,069
Bush honeysuckles	Lonicera spp.	27%	3,943

14,314
more points
(37%
increase)

Common Name	Scientific Name	inc	Total
Purple loosestrife	Lythrum salicaria	17%	1,642
Wild parsnip	Pastinaca sativa	18%	8,139
Canada thistle	Cirsium arvense	-	4,250
Phragmites	Phragmites australis	1%	5,529
Common buckthorn	Rhamnus cathartica	63%	1,673
Glossy buckthorn	Rhamnus frangula	12%	753
Wild chervil		-	613
Crown vetch	Securigera varia	36%	988
Tansy	Tanacetum vulgare	148%	10,778
Hedgeparsleys	Torilis spp.	12%	509
Garden valerian	Valeriana officinalis	5%	506

Did the iterative process improve models? AUC values for each model vs ensemble

Where are we in the process?

Objectives:

- Determine if models are providing an acceptable correct classification rates for suitable habitat for modeled invasive species?
 - Across all species
 - Ensemble vs individual models
 - Within each species
 - Ensemble only

Great Lakes Early

Detection Network

Assessment of classification (

- Independent dataset from stakeholde submitted in summer 2017
 - Submitted via the Greak **Detection App**

Reports

- 3,916 reports
 - 89% of Wisconsin counties reported at least one
 - 2,937 were used
 - Excluded if in novel areas or within road networks
- Calculated the % correct/incorrect classification for each species
 - Compared ensemble vs each model
 - All species
 - Early detection species
 - Widespread species
 - Evaluated ensemble only within species

What Habitat Suitability Models look like

Models run at 30 m resolution

Converting Models into Binary maps (Ensemble)

Percent of observations that were classified correct/incorrect as suitable habitat

Ensemble (at least one model correct)

Percent correctly classified

ensemble vs each model

* In all cases the ensemble approach had a higher % of correct classifications (t-tests p<0.05)

Percent correctly classified by species (ensemble)

* Chi square or Fisher's exact test

Summary

- Ensemble correctly classified suitable habitat better than any one model
- Ensemble correctly classified invasive plant locations > 80%
 - Early detection > up to 90%
- Individual species
 - 12 species were correct > 80%
 - 5 species were similar to 80% expected correct
 - 4 species were worse than 80%

Next steps

- Improve models of species that
 - <80% AUC (great)
 - <80% correct classification (type I error)
 - N for validation is > 50 and from at least 25% of counties
- Apply models to 5 climate change scenarios
 - Phragmites
 - Japanese barberry
 - Leafy spurge
 - Hedgeparsley

Wouldn't be possible without the development of previous resources and networks

